Learning and Classification of Car Trajectories in Road Video by String Kernels

نویسندگان

  • Luc Brun
  • Alessia Saggese
  • Mario Vento
چکیده

An abnormal behavior of a moving vehicule or a moving person is characterized by an unusual or not expected trajectory. The definition of exptected trajectories refers to supervised learning where an human operator should define expected behaviors. Conversely, definition of usual trajectories, requires to learn automatically the dynamic of a scene in order to extract its typical trajectories. We propose, in this paper, a method able to identify abnormal behaviors based on a new unsupervised learning algorithm. The original contributions of the paper lies in the following aspects: first, the evaluation of similarities between trajectories is based on string kernels. Such kernels allow us to define a kernel-based clustering algorithm in order to obtain groups of similar trajectories. Finally, identification of abnormal trajectories is performed according to the typical trajectories characterized during the clustering step. The method has been evaluated on a real dataset and comparisons with other state-of-the-arts methods confirm its efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique

The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...

متن کامل

Generalized Similarity Kernels for Efficient Sequence Classification

String kernel-based machine learning methods have yielded great success in practical tasks of structured/sequential data analysis. In this paper we propose a novel computational framework that uses general similarity metrics and distance-preserving embeddings with string kernels to improve sequence classification. An embedding step, a distance-preserving bitstring mapping, is used to effectivel...

متن کامل

Supervised Learning Methods for Vision Based Road Detection

One of the most important problems in the development of autonomous driving systems is the detection of navigable road. This paper explores a formulation of this issue as a supervised learning problem. Given highway video taken by a frontal camera, a naive method for generating positive and negative test images is proposed in order to implement binary classification. Two promising classificatio...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Removing car shadows in video images using entropy and Euclidean distance features

Detecting car motion in video frames is one of the key subjects in computer vision society. In recent years, different approaches have been proposed to address this issue. One of the main challenges of developed image processing systems for car detection is their shadows. Car shadows change the appearance of them in a way that they might seem stitched to other neighboring cars. This study aims ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013